LeetCode 70. Climbing Stairs

LeetCode 70. Climbing Stairs

Description:

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.

  1. 1 step + 1 step
  2. 2 steps

Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.

  1. 1 step + 1 step + 1 step
  2. 1 step + 2 steps
  3. 2 steps + 1 step

分析:

如果能够看出这是斐波那契数列,解这道题就很容易了。
但是一开始我想着要用动态规划来求解,一开始想着从0步开始,每一次加1或者加2,如下图:
这里写图片描述
然后我用二维数组来处理,自己想复杂了,一直Wrong Answer,后来灵光一现,这不就是斐波那契数列吗?动态规划一下子就变得简单了。

代码如下:

动态规划:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <iostream>
using namespace std;
class Solution {
public:
int climbStairs(int n) {
int d[n + 10];
d[1] = 1;
d[2] = 2;
for (int i = 3; i < n + 1; i++) {
d[i] = d[i - 1] + d[i - 2];
}
return d[n];
}
};
int main() {
int n;
cin >> n;
Solution s;
cout << s.climbStairs(n) << endl;
return 0;
}

Fibonacci数列:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <iostream>
using namespace std;
class Solution {
public:
int climbStairs(int n) {
if (n == 1) return 1;
int first = 1;
int second = 2;
for (int i = 3; i <= n; i++) {
int third = first + second;
first = second;
second = third;
}
return second;
}
};
int main() {
int n;
cin >> n;
Solution s;
cout << s.climbStairs(n) << endl;
return 0;
}
------本文结束感谢阅读------