LeetCode 110. Balanced Binary Tree

LeetCode 110. Balanced Binary Tree

Description:

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.


分析:

首先注意一下题意,这里需要判断每个结点的平衡性,不仅仅是根节点,一开始在这里搞错了,故需要递归判断左右子树的平衡性。

根节点为NULL,返回true,接着求左右子树的深度,可以利用104题的求左右子树的最大深度的代码,然后判断abs(left-right)<=1,即可得到结果。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <iostream>
#include <cmath>
using namespace std;
/**
* Definition for a binary tree node.
*/
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isBalanced(TreeNode* root) {
if (root == NULL) {
return true;
}
else {
int left = maxDepth(root->left);// 左子树深度
int right = maxDepth(root->right);// 右子树深度
// 注意这里依然需要递归左子树、右子树
return abs(left - right) <= 1 && isBalanced(root->left) && isBalanced(root->right);
}
}
int maxDepth(TreeNode* root) {
if (root == NULL) {
return 0;
}
else {
int leftDepth = maxDepth(root->left) + 1;
int rightDepth = maxDepth(root->right) + 1;
return leftDepth > rightDepth ? leftDepth : rightDepth;
}
}
};
// 构造二叉树
int TreeNodeCreate(TreeNode* &tree) {
int val;
cin >> val;
if (val < 0) // 小于0表示空节点
tree = NULL;
else {
tree = new TreeNode(val); // 创建根节点
tree->val = val;
TreeNodeCreate(tree->left); // 创建左子树
TreeNodeCreate(tree->right);// 创建右子树
}
return 0;
}
int main() {
Solution s;
TreeNode* tree;
TreeNodeCreate(tree);
cout << s.isBalanced(tree) << endl;
return 0;
}
------本文结束感谢阅读------