LeetCode 674.Longest Continuous Increasing Subsequence

LeetCode 674.Longest Continuous Increasing Subsequence

Description:

Given an unsorted array of integers, find the length of longest continuous increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it’s not a continuous one where 5 and 7 are separated by 4.

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.

分析:

这道题其实就是动态规划找最长递增子序列的简易版,只要求找最长连续递增子串,可以减少一层循环,时间复杂度为O(n).

例子:

来看看例子[1,3,5,4,7],首先我们用vector来定义一个length,表示子串的长度,先置为1,然后循环遍历这个vector容器,比较前后两个数的大小,更新每个length的大小。最后再取出length的最大值,即为结果。
首先长度置为1:length[0]=length[1]=length[2]=length[3]=length[4]=1
根据上述算法得到:
当nums[0]=1时, length[0]=1
当nums[1]=3时, 3>1, length[1]=2
当nums[2]=5时, 5>3, length[2]=3
当nums[3]=4时, 4<5, length[3]=1
当nums[4]=7时, 7>4, length[4]=2

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
vector<int> length(nums.size());
for (int i = 0; i < nums.size(); i++) {
length[i] = 1;
}
for (int i = 1; i < nums.size(); i++) {
if (nums[i] > nums[i - 1]) {
length[i] = length[i - 1] + 1;
}
}
// 找出最大的length
int max = 0;
for (int i = 0; i < nums.size(); i++) {
// cout << length[i] << " ";
if (length[i] > max) max = length[i];
}
return max;
}
};
int main() {
Solution s;
int n;
cin >> n;
vector<int> nums(n);
for (int i = 0; i < n; i++) {
cin >> nums[i];
}
cout << s.findLengthOfLCIS(nums) << endl;
return 0;
}

运行结果如下:

输入:
5
1 3 5 4 7
输出:
1 2 3 1 2
3


可以参考我的另一篇文章最长递增子序列——动态规划

------本文结束感谢阅读------